If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-35x-168=0
a = 7; b = -35; c = -168;
Δ = b2-4ac
Δ = -352-4·7·(-168)
Δ = 5929
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5929}=77$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-35)-77}{2*7}=\frac{-42}{14} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-35)+77}{2*7}=\frac{112}{14} =8 $
| f/29=–4 | | b+222=887 | | 2xx=52 | | -6=x–20 | | -15=3/7b= | | 5h+8+9h=10 | | 7x^2-35-168=0 | | b/14=28 | | a/4+7=3 | | 1/4(8x-12)+4x=9-1/2(4x+8x) | | –22t=–462 | | 18=3k−3 | | 5+(0.50*x)=11.50 | | 29=u/7 | | 2x+2+56= | | –2+d=3d+10 | | –7b+7b+7=7+9b | | b+610=746 | | 12x+45=177 | | y+257=947 | | 25g=925 | | -3(2x-3)+x+4=-28 | | 1/4b-12=8 | | 22+55x+x=-20+60x | | c) X-20=2 | | -2u-3u+8=8-5u-12 | | v6=3 | | 43x+128=180 | | 28/8=k/2 | | 2p−14=4(푝p+5) | | 5x-15+2x=21=180 | | n^2+6n=-25 |